If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-10y-100=0
a = 2; b = -10; c = -100;
Δ = b2-4ac
Δ = -102-4·2·(-100)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-30}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+30}{2*2}=\frac{40}{4} =10 $
| 35=8(x-3) | | 12=r+6-2r= | | 7y−10y+6=9 | | (4x+20)+(2x+15)+(2x+15)=360 | | -3=14+k | | 5(2x+3)-3=7x+20 | | x²-6x+9=0 | | 5t-6=2t+18 | | 3(m-30)=-6m | | -2x+5+-x-5=0= | | 3(2)^(2x)-10=122 | | 8p=97 | | 1/64=^2^6x | | 8(x-7)+24=8x-31 | | 4x-184=360 | | 3(m+16)=5m | | 12x+18=9x+39 | | 44*73=44*(p+3) | | 8c+21=7c−16 | | 3E^x=60 | | 3(m+16)=-5m. | | 5/12=8/n | | 10^2+x^2=15^2 | | 2x*x=10000 | | -6x+9=4(5-x | | 17x-2=180 | | 10=u/3+7 | | 13r+1=12r+1 | | 7-3+4x-5=2x+4+5x | | x^2+10^2=15^2 | | 24=6(g-88) | | 3e^2+100=40 |